On nonlinear preconditioners in Newton–Krylov methods for unsteady flows
نویسندگان
چکیده
The application of nonlinear schemes like dual time stepping as preconditioners in matrix-free Newton– Krylov-solvers is considered and analyzed, with a special emphasis on unsteady viscous flows. We provide a novel formulation of the left preconditioned operator that says it is in fact linear in the matrix-free sense, but changes the Newton scheme. This allows to get some insight in the convergence properties of these schemes, which is demonstrated through numerical results. Copyright q 2009 John Wiley & Sons, Ltd.
منابع مشابه
Short Communication A Parallel Newton–Krylov Method for Navier–Stokes Rotorcraft Codes
The application of Krylov subspace iterative methods to unsteady three-dimensional Navier–Stokes codes on massively parallel and distributed computing environments is investigated. Previously, the Euler mode of the Navier–Stokes flow solver Transonic Unsteady Rotor Navier–Stokes (TURNS) has been coupled with a Newton–Krylov scheme which uses two Conjugate-Gradient-like (CG) iterative methods. F...
متن کاملNonlinear iterative solvers for unsteady Navier-Stokes equations
The application of nonlinear schemes like dual time stepping as preconditioners in matrix-free Newton-Krylov-solvers is considered and analyzed. We provide a novel formulation of the left preconditioned operator that says it is in fact linear in the matrix-free sense, but changes the Newton scheme. This allows to get some insight in the convergence properties of these schemes which are demonstr...
متن کاملNewton Method for Nonlinear Dynamic Systems with Adaptive Time Stepping
This paper presents a nonlinear solver based on the Newton-Krylov methods, where the Newton equations are solved by Krylov-subspace type approaches. We focus on the solution of unsteady systems, in which the temporal terms are discretized by the backward Euler method using finite difference. To save computational cost, an adaptive time stepping is used to minimize the number of time steps. The ...
متن کاملFully implicit Lagrange-Newton-Krylov-Schwarz algorithms for boundary control of unsteady incompressible flows
We develop a parallel fully implicit domain decomposition algorithm for solving optimization problems constrained by time dependent nonlinear partial differential equations. In particular, we study the boundary control of unsteady incompressible Navier-Stokes equations. After an implicit discretization in time, a fully coupled sparse nonlinear optimization problem needs to be solved at each tim...
متن کاملSILCA-Newton-Krylov: Robust and Efficient Time-Domain VLSI Circuit Simulation by Krylov-Subspace Iterative Methods with Quasi-Newton Preconditioners
In this paper, we present SILCA-Newton-Krylov, a new method for accurate, efficient and robust timedomain VLSI circuit simulation. Similar to SPICE, SILCA-Newton-Krylov uses time-difference and Newton-Raphson for solving nonlinear differential equations from circuit simulation. But different from SPICE, SILCA-Newton-Krylov explores a preconditioned flexible generalized minimal residual (FGMRES)...
متن کامل